Work-Energy Theorem

Work

$$W = \vec{F} \cdot \vec{d} = Fd\cos\theta$$

- F = Force [N] (+)
- d = distance [m] (+)
- θ = angle between F and d
- Work = $[N*m = kgm^2/s^2 = Joules]$
- Work can be (+) or (-) depending on $\cos\theta$.
- •When the force is not constant:

$$W = \int_{x_0}^{x_f} F(x) dx$$

Work-Energy Theorem

 We know: Net work can be found by taking the net force and multiplying it by the displacement.

$$\Sigma W = \Sigma F \bullet d$$

Plugging in F=ma and calling displacement x instead of d, we get:

$$\Sigma W = \max$$

• Rearranging our 3rd equation, $v^2 - v_0^2 = 2ax$ for an expression for 'ax', we get:

$$ax = \frac{1}{2}(v^2 - v_0^2)$$
 $\Sigma W = m\frac{1}{2}(v^2 - v_0^2)$ $\Sigma W = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$

- The quantity ½ mv² represents the energy associated with the motion of a particle and is called **kinetic energy**. Kinetic energy is a scalar quantity and has the same units as work. $KE = \frac{1}{2} mv^2$
- Therefore,

$$\Sigma W = \Delta KE$$

This is the work-energy theorem.

Ex 1: A 6.0 kg block initially at rest is pulled along a horizontal, frictionless surface by a constant horizontal force of 12 N. Find the speed of the block after it has moved 3 m.

Ex 2: Find the final speed of the above block if the surface is not frictionless but instead has a coefficient of friction of 0.15.

Ex 3: A crate of mass 10 kg is pulled up a rough incline with an initial speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20° with the horizontal. The coefficient of kinetic friction is 0.4, and the crate is pulled 5.0 m.

- a) How much work is done by gravity?
- b) How much work is done by friction?
- c) How much work is done by the applied force?
- d) How much work is done by the normal force?
- e) What is the net work done on the crate?
- f) What is the change in KE of the crate?
- g) What is the speed of the crate after it has been pulled 5 m?

Ex 4: A box of mass m is given a push down the hallway. The push imparts an initial speed of 4 m.s. How far does the box go before it stops if the coefficient of kinetic friction between the box and the floor is 0.550?