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& Almost * erms we have used thios Tar Ve
Y oon=—convey nearlv the same meaning in phvsIcs jis
HOWEVET, Wi COCOUNnIer a 1weim whost: meaning o WIS Is %
trom its evervday meaning. hat new term is wms
To understand what werk means w the phyvsicist, conside I
rated in Figure 7.1. A force is _||||'||||_--;| io a chalkboard eraser, and
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CHAPTER 1 Work and Ksnetic ERETRY I

. mepenimude of the force
| o eonsicler not only the Mgt 1 ks
erser, we peesel o ae

. » applied force i3 the same
. (it the .11.|.|.-,m|u:lq aof I]1.t P 2 it ¥ in g P
Pioan, T we sessuomnnd . : the 'Ihl.i"i-ll- ;qpp]u-._i i l-lgur:: 7 1b does More 4, £,
(] .

; = la. On the other hand, Figure 7, %
: Wil e psh in ¥ = - Shop,
e b S : ljescd force gloses ol mMove the eraser at all, Terardle
sitvintiony i whieh the apphiet ) B ¢ a force so v N
howe e it is puished { Unless, of conurse. W afi[ihhd e e Hftf'i-’n that w, hr:—,l
[TRELEN [ ! : ' AT IR * WOk ey
sodnetling. ) Sy, in analveing forces 10 e e lkl r B I”‘ WE My
iler 1h Jor matnre of forees, We also need 1o know how far the erage,
shilasy 1 vescii i i ; - . :
Mo ety il we want 1o determine the work required 10 cause tha MMy,
LLLLi L) - aLLE ' . ok Tham moving it 2 cm. .
ALt e work than B
Mowing the erser 3 m requares o = : :
omang the g | sion in Figure 7.2, where an object undergoe, , .
' g ; [
line while acted on by a constant force F thyy ra-,}’

hoggeaphin i b cleur (B0

Lt s examinge the sik
prhcement d along a straig i
anangle #with d.

I'he work W done on an object by an agent excriing a constant force
-] : E 2 - - | By - v
Wi objeet is the product of the component of the force 10 the direction of the
displacement and the magnimde of the displacement:

We Fdeoos 8 : TR

As o esanple of the distinetion beoween this defimition of work and s
eveen vl ||I|||E|.'|~.I!.|Hl:|ll'|;{ of the word, consides t'“-'J"'I-“"'d a heawy chair ar arm'’s
lenwgrhe Baw 2% aewinn, A thee enel of this time ntenval, vour tred arms mav lead you
think thiae yon B done o considerable amount of work on the chair According
fow aomn el hieswesver, von lewe done o work on it whar<oever ! Yiou ﬂmi
Fewreas fos saipagesnt ihins ol isn e oy mot mowee 1t A force does no work on am ob
pect i e olject dhoes not meve. This can be seen by noting thac o J = 0, qu:tau'-m
7.0 gives Wos ll—the situanon depicied in Figure 7. 1.

Alsor sote vomn Fapuation 7.1 than the work done by a force on a moving objea
i e when the foree applicd s perpendicular o the object’s displacement. Tha
is, il # == W, then W= ) becanse cos W0° = 0, For example, in Figure 7.3, e
wirrk dlone by the nonual lorce on the object and the work done by the foree o
grawvity an the objeet are both zero because both forces are IJ-l:'T]JL'n::Iituhr o the
dhisplacement and e pero components in the direction of d.

The sign ol the work also depends on the direction of F relative to d. The
wirk done h!f the '-li:"ll'!“"" force is positive when the vector associated with i
::;II*IN““‘IIIII." lli'ﬁ;l'f‘tmlml the same direction as the displacement. For cxamp®

wen an object i . E s
:Hr:rliu-:l u?'-lf:u.: I'I::r:‘bt-c.ils!: wr:deE t:w lhe ahad fﬂrc_c S i e
ment. When the vector amP::tl“[' ' -,: 5 5 Uiy, e d.lrrcun_n it e dﬁpt;
oppuosite the :Ii;placmneﬁt Wis .1,““ i l.l‘ltmepnnmt o e rj_u' rﬂlﬁﬂ
I mei;nm t‘urcﬁntﬁ. or -.::an:nplc, as an object is lif o
the definition of W(Eq. 7.1) awoma n the object is negative. Tht_rﬂ.cu:r:l' s "
s Hcally takes care of the sign. It is importan*

@ note that work s an energy transfer; i energy ; gystem (o
B ject), Wis positive; if energy is ransferred from E ;ﬂﬁﬁ;ﬁ

b Artually, you do work while holdin . .

- & the chair at ! conne™®™
contracilng and reluxing; this means tha dhey :2 !-_:f?h because vour muscles ’tﬁnﬂ-‘ﬂ*'
befing clusie by yoaue by —bit internally on imself : “'r“thﬁmﬂ;:'lm :c;lrzr: Of your ani.
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7.1

If an .qmﬂi"l'"i force F aces along the direction of the

jea = 1.In this case, Equation 7.1 gives
A

W= Fq
Wwork is @ scalar quantity, and jig units are force

e the SEunit of work is the newton-meter (N
L L }
" dso frequenthy that it has been given
1+

[puick Quiz 7.1 g

(am the component of a force that gives an object
e wbpect? (Ome such force is that exerted by the
, cineular orhar around the Sum.)

‘m). Thi

In general, a particle may be
i under the mfluaence of several forees.
quantity. the wital work done as the

In these cases,

moving with either a constant or a vars

|

Work Done by o Constant Force

::Ii:splu:':-rntm. then 8 = 0

multiplied by length. There

s combination of umnits is

A name of its own: the joule (1.

A ceninpetal acceleration do anv work on
dun on the Earth thar holds the Eanh in

ing veloc-

because work is a scalar

particle undergoes some displacement s the

dgebraic sum of the amounts of work done by all the forces,

. EXAMPLE 7.1 Mr.Clean

A man cleaning a floor pulls a vacuum cleaner with a force of
magnitude
al (Fig. 7.4a). Calculate the work done by the force on the
vacuum rlearer as the vacuum cleaner is [li'dl]l.il:'['n:‘l RO

the right

Solution Because they aid us in clarifying which forces are
acting on the object being considercd, drawings like Figure
1.4b are helpful when we are gathering information and or-
ganizing a solution. For our analysis, we wse the definition of
work (Eq. 7.1):

W= (Fcos 6)d
= (50.0 N) (cos 30.0°) (3.00 m) = 130 N'm

-

One thing we should learn from this problem is that the
formal force m, the force of gravity F, = mg. and the upward
“Umponent of the applied force (50.0 N) (sin 30.0°) do no
"9rk on the vacuum cleaner because these forces are perpen-
dicular 1o juy displacement.

1
|
| SO0 N at an angle of 30,0" with the horzon-

r——

Eaercise Find the work done by the man on the vacuum
cleaner if he pulls it 8,0 m with a horizontal force of 32 N.

ki

Figure 7.4  (a) A vacuum cheaner being pulied at an angle of 300"
with the horizontal. (b} Freebody diagram of the foces scting on
the vacuurmn cleaner.
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T2z THE SCALAR PRODUCT OF TWO VECTORS
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i 7.1, 0t is helpdold go mse a CoEweTeTii i Sffve il eC el assl ARl 1 hl_“.’lJ.J.IPI"lIlEﬁ-
Fhis ool allows ws 1w indicate how F and d micract in a way Hial depends on hos

close o parallel they happen to be. We write this scalar product Fed. ( Because
the dot symbol, the scalar product s olten called the dot F:‘t:—dufl- [ Tiies, we o
express Equaton 7.1 as a scalar product

Work expressed as i dot product W= Fd= Ficos # (12

In other words, F-d (read “F dot d7) is a shorthand notation for Fd cos @

In ﬁ'-l’.'“{"m], the scalar pmdu{[ ll]f ﬂﬂ_:’.' WO Vectors _j‘_ :“-H-] B it 3 s5( a]ﬁ!’ -::|1.=3-n'.':1

Scalar product of any two vectors equal to the product of the magnitudes of the two vectors and the cosing of the
Aand B angle 8 between them:

A'B = ABcos @ ‘”Jl

This reladonship is shown in Figure 7.6. Note that A and B need not —
SATTHE LML -



] F.2  The Scalgr Product of Two Vectors

1ET
In Figure 7.6, B cos @ is the pro

; lection of B angg A
that A- B is the producy of 1)
o 1k

: Therefore, g o
T magniiyude of A and Austion 7%

the 'Pl'ﬂjl_‘(l_ltm il B OnkG
ud From the 1jgh|_:-hifm‘| side of Equation 7.3 we also see that the scalar product is
tive.” LT hart is,
commuta
AB = B-A
inally, the scalar produc
ha

The order af the chox product can
obevs the distributive Layw of multiplication, -, o

A B+C) =

The dot product is simple 1o evaluate from Equation 7.3 when A e
1,.mdj.rl.ﬂ+“ or parallel to B. If A is Perpendicular 1o B (§ =
(The equality A'B = 0 also holds in (he MONe trivial
wero} If vector A is parallel 1o vector B and the pwo
jf =0}, then A'B = AR If vector A s
posite directions (8 = 180"),
when 00° < 8 < 180°,

i i = . : Figure 7.6 The scalar pro-duct
The unit u'c'lﬂh_ i, j. and k, '_wlmt: were defined in Chapter 3, lie in the posi- ":_':t quals the m _a““imj:ur A
ive x 3 and : directions, respectively, of a right-handed coordinate system. There-

multiplied by B cos &, which is the
fore, it follows from the definition of A+B that the scalar products of these unit projection of B onto A

AB + A-C

ther per-
90°), then A-B = 0.
case when cither A or B is
point in the same direction
parallel 1o vector B bug the two point in op-
then A-B = — 4 The scalar product is negative

A

== kek=1 s ST N
ij=ik=jk=0

(7.5)
Equations 3.18 and 3.19 state that two vectors A and B can be expressed in
component vector form as
A=ALit+A]+rAk
B=Bi+Bj+BEk
Using the information given in Equations 7.4 and 7.5 shows that the scalar prod-
uctof A and B reduces to
AB = AB, + AB + AB, (7.6)

\Details of the derivation are lefit for you in Problem 7.10.) In the special case in
which A = B, we see that

ﬁ-‘.ﬁ.’ﬂlf'l‘ ﬂ.f'l' .rl,_!t.ﬂ!‘

lld:.-_gjm

product of wo vectors is positive, must the vectors have positive rectangular com-
POTaer g

; section of
' ) .i’thmEmtblw‘mmmdmlmmﬂeﬂlmﬂdﬂm
::H:l wecioars that prowes
! i - -
I“I“ﬁ'mmmh“,,&w;1|rmwmutumd1rrurufmhmm:
™ physics and k& mot sommutative,




18 CHAPTER 7 Work ond Kinetic Energy 1

ExAMPLEEED> The Scalar Product
i) Finel ihe angle @ berween A and B,

T vicoors A and B are given by A = % + Hand B = —1 +
va) Descrmine the scalar prod ti-B. :
e o Solution The magnitdes of & and B are

A=vat+ 42 =D+ (3 =13

Selation
AB=(S+H-(-i+ P BaABE+ BI=A(=1+ (2 =45
- -2+ H-G-Hi+YT et
I%i : A el thee result from part (a)
. _ 31y + 4(0) — 3(0) + 6{1) Using Equation 7.3 an part (a) we 1'""’“&!
o A-B | _ 4
I T o B = . = == = =
kR e AB I3 V63
where we have used the facts that i4 = 4 = 1 and ij = _';l. g ™ :
i The <mme resuk & obtained when we use Equation 7.6 «i- # = s F{‘H_J = G602
!ﬁth.hh-rrr'..=E..l.,=l'-.ﬁ,=—l.imtlﬂ,='..! ¥
o =

“ Work Done by a Constant Force

A\ parmdle moving the xy plane undergoes a displicement Solution Substituting the expressions for F and d i
d = 20— 340§ m as a constant force F = (508 + 2§ N Equations 7.4 and 7.5, we abiain
aces on the particle. (a} Calculate the magniude of the dis W= Fod = (505 + 205+ (2.00 + 3.0§) N-m
phaccenent and that of the torce, ok : ; i

506208 + 5.08-3.05 + 2.0§-200 + 2.0§-3.0

[0+ +0+6=16N-m= I&]

d=yr —v = '.-.:.'.fu'-' - f."ii.l..ll"' = J6m
Exercise Coloulare the angle beneen F and d,

F=3Ft = FE2 =G50+ (20)° = 54N v
Answer 357

i b Caloulare the work done by F.

.3 » WORK DONE BY A VARYING FORCE

& Consider a panticle being displaced along the x axis under the action of a varyng
52 foree. The particle is displaced in the direction of increasing x from x = %10 5%
x. In such a situation, we cannot use W= (Fcos 6)d 1o caleulate the work done i
the force because this relationship applies only when F is constant in magnitede
and direction. However, if we imagine that the particle undergoes a very small d&
placement Ax, shown in Figure 7.7a, then the x component of the force F.isap
proximately constant over this interval; for this small displacement, we can expres

the work done by the force as
AW= F, Ax

This is just the area of the shaded rectangle in Figure 7.7a. If we imagine that ¢

F, versus x curve is divided into a large number of such intervals, then the ¢!

work done for the displacement from x; to xyis approximarely equal ©
a large number of such terms:

the sum

W= 3 F, Ax
5

"
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If the displacements are allowed 1o

Approach zero, then the nambe
the sum increases without lin

it but the value of the s
value equal 1o the area bounded by the F, curve

Ul levons an

Approis bues o dlelimine
and the x axis

_‘Ilil'n zf",\_.!l..\: : J F, dx

si] .

This definite mtegral is numerically equal 1o the area under the F averspsx
curve between x, and x;. Therefore, we can express the work dowe by F_as

e i
tcle moves from x, to el

W= JqF‘. dx {7.7) Work dosie by 2 varving force
]

This equation reduces 1o Equation 7.1 when the component F, = F cos # is con-
sant.

If more than one force acts on a particle, the toal work done i!i-_il.l\-.l Lh-:-_ work
done by the resultant force. If we express the resultant force in the xdlrﬂ'l.mu as
lhén the towal work, or net work, done as the particle moves from x 10 Xgis

E4]

S W= Wy = _[ *(Ef;]su (7.8)

Eﬁ”ﬂ_' Calculating Total Work Done from a Graph

parti [ mal o the area
' 1 in Figure  Solution The work done bw the force -:i- eqi . :
e WL 00 X I:-d: e F' ﬂ:hu':"“;; pﬂr;_lru'itll.-. under the curve frum x5 = 0 10 xc = G0 m. This area i
1 = Calculate the e e Htl-ul i3 the area of the reg tangubr section from & w § plus
Mves from x = 0 1o x = 6.0 m.

Ry R S SR U .
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i:ﬂl golution We can wse Fguation 7.7 10 calowe
¢ precise yalue for the work done on e probe by

nolyt

a M ; ER
2l o solve this imiegral, we ke thie Gl formila ol

7.3 Work Done by a Varying Force

191

! ;=] -_‘:|
= (=13 X W =g~ 15 = 10"

1T"r,t_|,;.,. appendix Bowith me =2 = —3.0% 10¥]
ab :
| ‘2 4% 1) - 1.3 ® Y
| L ' e — ilx
X JLARIR e Exercise Does it matier whether the path ol the probe is
RO Kol ST nof directed alomg a radial e avwad fromm thie Suns
= {— 1.3 X HF) % il
§ Ex i o
% g bl Answer N the value of W depenids only on the initial and
= (- 1.8 x 10%){~x"1) final positions, not on the path taken between these points
EE T
-_-_'_,——_ e o - . e e e ™ e ™ s e ™ i, e — e —— . e pp— p— o
Work Done by a Spring

 commort physacal system for which the force varies with position is shown in Fig-
] '.“-F 10 A block on a horizental, Inctionless surface is connected 1o a spring. U
- : b r ) -
the spring 1 €l her stretched or compressed a small distance from s unstrets hed
jequilibrium) configuration, it exer ts o the block a force of magnitude
F=-kx {7.9] Sprng force
where xis the displacemnent of the block Irom ws unstretched (x = 0) position and
ki a positive constant called the force constant of the spring. In other words, the
force required 1o stieich oF compress a spring is proportional o the amount of
wreich o compression & This foree law for springs, known as Hooke's law, 15
wihid onbv in the limiting case of small displacements. The value of k is a3 measure
of the stiffness of the spring, SGff springs have large & values, and solt springs have
small kvalues.

Duick Quiz 7.4

Whas are the units for k, the force constant in Hooke's law?

The negative sign in Equation 7.9 signifies that the force exerted by the spring
B always directed opposite the displacement. When x > 0 as in Figure 7.10a, the
#pring force is direcied to the lefi, in the negative x direction. When x< 0 as in
Figure 7.10¢, the spring force is directed to the right, in the positive x direction.
When x = ) as in Figure 7.10b, the spring is unstretched and F, = 0. Because the
Pring force always acts toward the equilibrium position (x = 0), it sometimes is
0 A restoring force. If the spring is compressed until the block is at the point
i ;:ﬂh and is then released, the block moves from — Xpu through z€10 10 + ¥guy.
| € spring is instead stretched until the block is at the point Xy, and is then re-
“%¢d, the block moves from + Xpnax through zero 10 — Xpg.. It then reverses direc-
P 1o + %, and continues oscillating back and forth.
ﬂmsf‘FP‘Cf“-‘ the block has been pushed to the left a distance xq,, from equilib-
be 1 then released. Let us calculate the work W, done by the spring force as
lock moves from X, = = Xpay 10 %= 0. Applying Equation 7.7 and assuming
k may be treated as a particle, we obtain

e . |
W,=| Fde= (= kehdx = gk
iy -~ I

(7.10)




rHAFTER 7 Work gnd Kimetic EneTEy
F s megaiive

R K s [ ] e

192

F. is positive

T i MEsranme

- 7. . .
:ﬁ‘:m :qs:ti]i'ifl-:emf:rrr;:::td_!a & SPring on a.hﬂu-:k vanies with the block's displacement
directed w the befi [bF;nll.'h x = 0. (a) When xis positive (siretched spring), the spring force
(<) When xis ne -L-I'i'l't fiot i o mem] bength of the sprng), the spring force I'- L
of F, versus x for fhr bloc kTHI;IHT;::-;TJEw Spring force is directed to the right. (d) Grgh
from = x,.. to 0 is the area of fhe r-harlni m'm;z“- l::;ﬂ"' by the spring force as the block moes

= -
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